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High-order harmonic generation (HHG) of bulk crystals in strong laser field is typically investigated with semicon-
ductor Bloch equations (SBEs). However, in the length gauge, it suffers from the divergence for the crystals with a zero
band gap, such as graphene, using both Bloch- and Houston-states expansion methods. Here, we present a method of solv-
ing the SBEs based on time-dependent Bloch basis, which is equivalent to semiconductor Bloch equations in the velocity
gauge. Using this method, we investigate the HHG of a single-layer graphene. It is found that our results for population
are in good agreement with the other results. For a initial condition py = 0, we find the electrons just move in single
valence band or conduction band, which are in accord with classical results. Our simulations on the HHG dependence of
polarization of driving laser pulse confirm that 5th, 7th, and 9th harmonic yields increase to the maximal value when laser
ellipticity ε ≈ 0.3. What is more, similar to the case of atoms in the laser field, the total strength of 3rd harmonic decrease
monotonically with the increase of ε . In addition, we simulate the dependence of HHG on crystallographic orientation with
respect to the polarization direction of linear mid-infrared laser pulse, and the results reveal that for higher harmonics, their
radiation along with the change of rotation angle θ reflects exactly the sixfold symmetry of graphene. Our method can be
further used to investigate the behaviors of other materials having Dirac points (i.e., surface states of topological insulators)
in the strong laser fields.
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1. Introduction

High-order harmonic generation (HHG) from atomic and
molecular gases[1–4] has been a significant research topic in
recent decades due to broad applications, such as diffrac-
tive imaging,[5] extracting of structural information of atoms
or molecules,[6–12] probing magnetic dynamics.[13] More im-
portantly, we can construct untrashort attosecond (as) pulses
from harmonics,[14–19] which is an important tool for observ-
ing and controlling the ultrafast electronic dynamics in atoms
and molecules. The physical picture of the atomic HHG pro-
cess can be easily understood by the semiclassical three-step
model.[20] According to this model, the cutoff energy of har-
monic spectrum is Ip + 3.17Up, where Ip is the atomic ion-
ization potential, Up is ponderomotive energy which is pro-
portional to the intensity of laser pulse. Very recently, HHG
from the crystalline solid[21–28] has also aroused great interests
of researchers.[29–57] In this case, both experimental and the-
oretical investigations show that the harmonic cutoff energy
of the first plateau increases linearly with the amplitude of
field field. To interpret the mechanism of harmonic emission
from crystals, a similar three-step model in momentum space

is proposed on a basis of the energy band structure,[30] which
can describe well the motion of electron-hole pairs in crys-
tals: firstly, the electrons in the valence band driven by laser
field tunnel to the conduction band, producing the electron-
hole pairs; then, the electron-hole pairs oscillate in crystal lat-
tice under laser filed and gain momentum (energy); finally, the
electrons recombine with holes and radiate photons (HHG)
later. Obviously, for crystal matters, the strength of HHG
depends on the tunneling probability between valence band
and conduction band, which is related to the energy gap and
strength of laser, according to the Landau–Zaner law.

Theoretically, the semiconductor Bloch equations (SBEs)
are often adopted to investigate the HHG emission from crys-
tal, for it can easily introduce dephase time phenomenologi-
cally to take the relaxation effect into account.[35] However,
for crystals with the zero band gap, such as graphene, when
the initial electron momentum equals 0, the dipole moment
will be divergent near the Dirac points in the length gauge.
Thus, one must dig out the Dirac point or take a constant
in the calculations,[58,59] which is inconvenient and might in-
fluence the accuracy of calculations. Alternatively, a simple
transformation[60,61] is used to deal with the divergence due to
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the singular values of dipole moment near Dirac points. Fur-
thermore, we could also solve directly time-dependent Dirac
equation (TDDE).[62] However, in the last two cases it is diffi-
cult to consider the dephase time.

In this work, we present a method of solving SBEs in
velocity gauge, which can avoid the divergence of dipole tran-
sition moment near Dirac points in a single-layer graphene.
To confirm our method, we first compare our predictions for
the population and electron current with other methods. Us-
ing our method, next we analyze the contributions of quantum
trajectories around Dirac cone, and investigate the behavior
of harmonic from graphene generated by elliptically polarized
laser pulses. Finally we study HHG dependence on crystal-
lographic orientation of graphene. The article is organized as
follows. In Section 2, we give our theoretical framework. In
Section 3, we show numerical simulations on HHG. Then we
conclude our work in Section 4.

2. Theoretical method
Our theoretical approach is based on the time-dependent

tight-binding (TB) approximation,[63–65] which has been
extensively applied in the investigation of laser–graphene
interaction.[58,59,66] For the graphene, the most important elec-
tronic states responsible for the harmonic emission are those
arising from the carbon 2pz orbitals, which form the extended
π-bands. With the consideration of nearest-neighbor tight-
binding of the π-electrons, we can easily obtain the energy
bands. Near the Dirac points, energy bands calculated with T–
B approximation are in accordance well with those obtained
from first-principle calculations, i.e., density functional the-
ory, as long as the laser intensity is not too higher. The time-

dependent Hamiltonian of graphene in the length gauge can be
written as[67]

Ĥ(t) =
[

0 γ f (𝑘(t))
γ f ∗(𝑘(t)) 0

]
, (1)

where γ = −3.03 eV. The diagonalization of the matrix Ĥ(t)
then yields energy eigenvalues, for the valence band Ev(𝑘+

𝐴(t)) = −γ | f (𝑘+𝐴(t))| and the condution band Ec(𝑘 +

𝐴(t)) = γ | f (𝑘+𝐴(t))|.[68] Considering the TB approxima-
tion, the matrix element f (𝑘(t)) can be written as

f (𝑘(t)) =
3

∑
α=1

e i(𝑘+𝐴(t))δα (2)

with δ1 = (a/2)(1,
√

3), δ2 = (a/2)(1,−
√

3), δ3 = −a(1,0)
are the locations of nearest neighbors separated by distance
a ≈ 1.42 Å. Considering the dephasing time,[36] the resulting
dynamic equation in the length gauge reads[59,66]

d
dt

ρmn = −i(Em(𝑘+𝐴(t))−En(𝑘+𝐴(t)))ρmn

−i𝐹 (t){𝑑(𝑘, t), ρ̂}mn−
ρmn

T2
. (3)

Here, ρmn is density matrix comprised of the inter-band po-
larization (m 6= n) and the population probability in a band
(m = n), 𝐹 (t) is the laser field, and T2 is dephase time.[58]

𝑑(𝑘, t) denotes the dipole moment

𝑑mn(𝑘+𝐴(t)) = i{[〈um(t)|5𝑘 |un(t)〉]}, (4)

where um,n is energy eigenvectors with the Houston basis.
Then we could obtain an explicit expression for 𝑑cv(𝑘) as

𝑑cv(𝑘) =
a

2 | f (𝑘)|2

{[
1√
3

cos

(√
3

2
akx

)
cos
(

1
2

aky

)
− 1√

3
cos(aky)

]
x̂+

[
sin

(√
3

2
akx

)
sin
(

1
2

aky

)]
ŷ

}
. (5)

Obviously, 𝑑cv(𝑘) will diverge near Dirac points due to its
vanishing band gap. This defect also exists in the case of Bloch
basis in the length gauge.[69]

In order to avoid this divergence, we can calculate current
in velocity gauge with Bloch basis. We can write Ĥ(t) as

Ĥ(t) = Ĥ0 +𝐴(t) ·𝑃 +𝐴(t)2 =
3

∑
α=1

Ĥα
0 +

3

∑
α=1

Ĥα
I , (6)

where 𝑃 is the momentum operator, and

Ĥ0 = γ

[
0 e i𝑘δ1

e−i𝑘δ1 0

]
+ γ

[
0 e i𝑘δ2

e−i𝑘δ2 0

]
+ γ

[
0 e i𝑘δ3

e−i𝑘δ3 0

]
, (7)

Ĥα
I (t) = γ

[
0 e i𝑘δα

e−i𝑘δα 0

]

×
[

e−i𝐴(t)δα −1 0
0 e i𝐴(t)δα −1

]
. (8)

Utilizing Bloch basis as unitary transformation matrix

U =
1√
2

[
e iθ f (𝑘) −e iθ f (𝑘)

1 1

]
, (9)

θ f (𝑘) is the phase angle, i.e.,

tan(θ f (𝑘)) =
Im( f (𝑘))
Re( f (𝑘))

,

we have

UĤα
0 U† =U

[
0 γ e i𝑘δα

γ e−i𝑘δα 0

]
U†, (10)

UĤα
I U† =U

[
0 γ e i𝑘δα

γ e−i𝑘δα 0

]
U†
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×U
[

e−i𝐴(t)δα −1 0
0 e i𝐴(t)δα −1

]
U†. (11)

Thus we obtain the time-dependent Hamiltonian in the Bloch
basis

ĤB(t) =UĤ(t)U† = γ

[
W1(t) W2(t)
W3(t) W4(t)

]
(12)

with

W1(t) =− f (𝑘(t))e−iθ f (𝑘) − f ∗(𝑘(t))e iθ f (𝑘) , (13)

W2(t) =− f (𝑘(t))e−iθ f (𝑘) + f ∗(𝑘(t))e iθ f (𝑘) , (14)

W3(t) = f (𝑘(t))e−iθ f (𝑘) − f ∗(𝑘(t))e iθ f (𝑘) , (15)

W4(t) = f (𝑘(t))e−iθ f (𝑘) + f ∗(𝑘(t))e iθ f (𝑘) , (16)

and 2-band equations

d
dt

Cv =
γ

2
i[−W1(t)Cv−W2(t)Cc], (17)

d
dt

Cc =
γ

2
i[−W3(t)Cv−W4(t)Cc], (18)

where Cv and Cc are probability amplitudes in valence band
and conduction band, respectively. Thus, CvC†

v is valence pop-
ulation, and CcC†

c is conduction population.
Next following the Ref. [55], we obtain following dy-

namic equations

d
dt

ρ(𝑘, t) =−iA∗4ρ(𝑘, t)+ iA∗1ρ(𝑘, t)

− iA3(1− fe− fh)− γrρ(𝑘, t), (19)
d
dt

fe = 2Im [A∗3ρ(𝑘, t)]− γl fe, (20)

d
dt

fh = 2Im [−A∗2ρ(𝑘, t)]− γl fh, (21)

where ρ(𝑘, t) is the inter-band polarization, fe and fh denote
electron and hole population, respectively, and

A1(t) =−
γ

2
[ f (𝑘(t))e−iθ f (𝑘) + f ∗(𝑘(t))e iθ f (𝑘) ], (22)

A2(t) =−
γ

2
[ f (𝑘(t))e−iθ f (𝑘) − f ∗(𝑘(t))e iθ f (𝑘) ], (23)

A3(t) =
γ

2
[ f (𝑘(t))e−iθ f (𝑘) − f ∗(𝑘(t))e iθ f (𝑘) ], (24)

A4(t) =
γ

2
[ f (𝑘(t))e−iθ f (𝑘) + f ∗(𝑘(t))e iθ f (𝑘) ]. (25)

Here, γr and γl are the transverse and longitudinal relaxation
constants, respectively.[36] In our calculations, γr = 0.2ω , γr =

0.05ω . In the most simplified case, γ | f (𝑘)| ≈ (k2/2mu +

Eg/2) and θ f (𝑘) = θ𝑘. As shown in Fig. 1 for the first Bril-
louin zone (BZ) of graphene, we can find two inequivalent
Dirac points referred to as K and K′, which are degenerate
in terms of energy. We can get two equation sets for them.
Around K we have

d
dt

ρ𝑘 =−iB4ρ𝑘+ iB1ρ𝑘− iB3(1− fe− fh)− γrρ𝑘, (26)

d
dt

fe = 2iIm(B∗3ρ𝑘)− γ l fe, (27)

d
dt

fh =−2iIm(B∗2ρ𝑘)− γ l fh, (28)

with

B1(t) = Ev(𝑘)− vf cos(θ𝑘)Ax− vf sin(θ𝑘)Ay, (29)

B2(t) =−ivf sin(θ𝑘)Ax + ivfAy cos(θ𝑘), (30)

B3(t) = ivf sin(θ𝑘)Ax− ivfAy cos(θ𝑘), (31)

B4(t) = Ec(𝑘)+ vf cos(θ𝑘)Ax + vf sin(θ𝑘)Ay, (32)

here vf is Fermi velocity, vf ≈ c/300, c is velocity of light. For
point K′ we have similar equations as for K, instead of substi-
tuting B2 with −B2 and B3 with −B3.

K

Kϕ Kϕ

θ
k

k
x

K
K

Kϕ

k
y

p
y

p
x

Fig. 1. The first Brillouin zone in graphene.

The above equation sets can be numerically solved for
each independent 𝑘 by the classical fourth-order Runge–Kutta
method combining with an adaptive step-size routine. We then
obtain the single-electron current. Around K, we have

jK
x (t) = (1− fe− fh)cos(θ𝑘)−2Im(ρ𝑘)sin(θ𝑘), (33)

jK
y (t) = (1− fe− fh)sin(θ𝑘)+2Im(ρ𝑘)cos(θ𝑘). (34)

Around K′, we have

jK′
x (t) = (1− fe− fh)cos(θ𝑘)+2Im(ρ𝑘)sin(θ𝑘), (35)

jK′
y (t) = (1− fe− fh)sin(θ𝑘)−2Im(ρ𝑘)cos(θ𝑘). (36)

After we taking into account the Fermi distribution and
initial condition 1− fe− fh =−F(𝑝)+F(−𝑝), where F(𝑝) =

1+ exp[(En(𝑝)−u)/kBT ]−1, with u, kB, and T being the
chemical potential, Boltzman constant, and temperature, re-
spectively, we obtain the total integrated electric current 𝐽(t).
The Harmonic spectrum is given by I(ω) ∝ |ω𝐽(ω)|2, 𝐽(ω)

is Fourier transform of the 𝐽(t).
If we want to further gain the information from valence

and conduction bands, at each time, we can easily get density-
matrix elements ρmn by simple unitary transformation

ρcc = 0.25(Z∗3Z3)(1− fe)+0.25(Z∗3Z4)ρ𝑘
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+ 0.25(Z∗4Z3)ρ
∗
𝑘+0.25(Z∗4Z4) fh, (37)

ρcv = 0.25(Z∗3Z1)(1− fe)+0.25(Z∗3Z2)ρ𝑘

+ 0.25(Z∗4Z1)ρ
∗
𝑘+0.25(Z∗4Z2) fh, (38)

ρvv = 0.25(Z∗1Z1)(1− fe)+0.25(Z∗1Z2)ρ𝑘

+ 0.25(Z∗2Z1)ρ
∗
𝑘+0.25(Z∗2Z2) fh, (39)

where

Z1(t) = (e−iθ f (𝑘(t)) e−iθ f (𝑘) +1)/2, (40)

Z2(t) = (−e−iθ f (𝑘(t)) e−iθ f (𝑘) +1)/2, (41)

Z3(t) = Z2(t), (42)

Z4(t) = Z1(t). (43)

From the above equations, we see that there are no diver-
gence around Dirac points in our method.

3. Results and discussion
3.1. Confirmation of our method
3.1.1. Comparison of population for conduction band

between velocity gauge and two-band model

In the following, we aim to confirm the validity of our
method. We first compare our calculated conduction band
population with those from Ref. [58], in which Kelardeh et
al. investigated the charge transfer process in graphene by a
two-band model based on Houston basis. The laser pulse has
the form of

F(t) = F0 e−u2
(1−2u2), (44)

where F0 is the amplitude of laser pulse, u = t/τ , τ = 1 fs,
laser frequency ω ≈ 0.057 a.u. We compare ρcc(𝑘, t) at the
end of laser pulse for two different laser amplitudes in Fig. 2.
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Fig. 2. Comparison of our calculated conduction band population ρcc(𝑘, t) in
the velocity gauge (right column) with those from the two-band model (left
column) given in Ref. [58] for panels (a) and (b) F0 = 0.8 V/Å and panels (c)
and (d) F0 = 2.25 V/Å.

One can see that the electrons movement under laser field

lead to interference fringes, and at the end of pulse, the dis-

tribution becomes completely symmetric which can be modu-

lated by laser amplitude. Our results with SBEs in the velocity

gauge agree very well with those from the two-band model,

for both amplitudes, i.e., F0 = 0.8 V/Å and a higher one of

2.25 V/Å.
In Fig. 3, we further compare ρcc(𝑘, t) obtained with two

methods for t = 0.75 fs and t = 2.25 fs. It shows again that

our results are in good accordance with those from two-band

model.[58]
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Fig. 3. The same as Fig. 2, but for panels (a) and (b) t = 0.75 fs and panels (c)
and (d) t = 2.25 fs with the same F0 = 1.0 V/Å.

3.1.2. Comparison of single-electron current calculated
from SBE and TDDE

Next, we compare current calculated by our method

(Eqs. (33)–(36)) with those from solving time-dependent

Dirac equation (TDDE).[62] The laser field used in the sim-

ulation is a flat-top pulse with a half-cycle ramp on

𝐴(t) =


0, if (t < 0),

A0
ωt
π

sin(ωt), if (0≤ t < π/ω),

A0 sin(ωt), if (π/ω ≤ t),

(45)

where A0 > |px|, the field strength is 27.5 kV/cm, carrier fre-

quency is 1 THz. In Fig. 4 we show the normalized single-

electron current calculated by two methods for three different

py values. Obviously, our results agree well with those from

TDDE in all cases.
We note that another advantage of our method is that

in our simulations without solving the gradient of 𝑑cv(𝑘),[55]

which promotes calculation efficiency greatly. In addition, if

we use the Houston basis, it is difficult to obtain correct current
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near Dirac points, although it provides an advantage of decou-
pling the states at different crystal momentum. From Fig. 4(a)
we see that a step transition occurred in the jx calculated with
the Houston basis, which is unphysical.
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Fig. 4. Comparison of the temporal evolution of the normalized single-
electron current calculated by our method and those from TDDE for (a)
py = 0, (b) py = 0.02A0, and (c) py = 0.05A0. In all the cases px/eA0 =
−0.75. In Fig. 4(a) we also show the result with Houston basis.

3.2. Application of our method
3.2.1. The contributions from quantum trajectories

After proving our method is feasible and effective, we
show a few examples of its applications in simulation of HHG
from graphene. Firstly, we strive to extract the contributions
of individual quantum trajectories around single Dirac cone,
which is important in analyzing electron dynamic motion. To
achieve this we use the windowed Fourier transform (WFT),
form of the wave function is given in Ref. [70]. In that paper,
Chizhova et al. showed that the individual quantum trajecto-
ries can be extracted by solving TDDE.

In Fig. 5, we show the laser vector potential and gener-
ated electron current, wave packets for three initial energies.
For initial energy of |En|< vfA0 and zero py, one can see that
electron moves in valence band or conduction band driven by
laser pulse with a constant current [Figs. 5(a) and 5(b)], the
response features intraband dynamics.

Considering an electron with initial momentum
px=0.8A0, py=0.1A0, it moves initially in the valence band.
When laser field reaches its maximum after one optical cycle,
electron is driven up to the Dirac point, then the electronic
wave packet splits into two parts, one is excited to the con-
duction band via inter-band Landau-Zener tunneling, while

the other remains in the valence band [see Fig. 5(d)]. The

superposition of two wave packets results in high-frequency

oscillations of the current jx [Fig. 5(c)], which is determined

by coherent superposition of inter-band and intra-band dy-

namics. The strength of Landau–Zener tunneling rate depends

exponentially on the energy gap between the two cones at

the py =constant conical intersection. The highest oscillation

frequency is realized when the two paths reach their maximal

separation in energy (near 1.5T ).
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Fig. 5. Left column: the vector potential of laser pulse and electron current;
Right column: the time evolution of the wave packet (red and black lines are
classical trajectories).

When initial energies |En| ≈ vfA0 and py ≈ A0, the total

current just shows intra-band dynamics, and electrons move in

valence band under laser pulses due to a big energy gap.

3.2.2. Harmonic dependence on ellipticity of driving
laser pulse

Unlike atom and uniaxial hexagonal crystal, HHG from

graphene shows abnormal dependence of harmonic strength

on the polarization of driving laser field.[71] Now we move to

this issue. We simulate harmonic spectra with the following

laser pulse:

𝐹 (t) =
F0√

1+ ε2
f (t)[cos(ωt)êx− ε sin(ωt)êy] (46)

with laser pulse shape of f (t) = cos2(πt/nT ), n = 8, the cen-

tral wavelength of 3200 nm, and the laser field strength of

F0 = 4.38×106 V/cm. In our calculations, we artificially limit

the Brillouin zone |𝑘−𝑘D|< 0.2 according to Ref. [59]. Fig-

ure 6 exhibits our simulated results for three laser ellipticities,

i.e., for ε = 0, 0.3, and 1.0. From the figure, we see that for

the circularly polarized pulse, the harmonic radiation is effi-

ciently switched off. However, the HHG yields generated in
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linear laser pulse is weaker than those in an elliptically polar-

ized laser field, except for the 3rd harmonics.
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Fig. 6. Comparison of harmonic spectra of graphene generated by laser
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Fig. 7. The dependence of intensity in two perpendicular directions (x and y)
of harmonics 3rd, 5th, 7th, and 9th on the ellipticity of driving laser pulse.

In Fig. 7, we show more detailed dependence of intensity

of harmonics 3rd, 5th, 7th, and 9th on the ellipticity of driv-

ing laser pulse. It is found that this dependence strongly relies

on the harmonic radiated direction. In the y direction, the 3rd

harmonic emission has a weak dependence on ε and reaches

maximal value at ε ≈ 0.15, while strong radiation in the x di-

rection, and the total harmonic yields decrease monotonically

with the increasing of parameter ε . This trend is similar to the

case of harmonic radiated from atoms.[72] For the 5th, 7th, and

9th harmonics, their strength in two directions intersect at one

laser ellipticity, and the x-direction harmonic intensity decays

quickly with the change of parameter ε , while the y-direction

harmonics increases to a maximal value at a certain ε (for ex-

ample, ε ≈ 0.3 for the 5th, 7th harmonics, ε ≈ 0.2 for the 9th

harmonics) and then decreases monotonically with further in-

creasing of ε . It is worth mentioning that the total harmonic

yields will display a non-monotonic variation, which can well

match the recent experimental observation[71] and theoretical

simulations.[59]

3.2.3. Effect of crystal orientation on HHG

The polarization direction of laser pulse with respect to

the crystal axis is another factor that influence the harmonic

emission.[73] However, the orientation dependence of the 7th

harmonic does not reflect the hexagonal structure of graphene

in an experimental study.[71] Here we reinvestigate this issue

using our method. We simulate harmonic spectra with a linear

laser field as described by Eq. (46) with F0 = 8.7×106 V/cm,

ε = 0, and the laser duration is 12 optical cycles. Figure 8

shows our main results.
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current for θ of 0◦ and 20◦, respectively.

From Fig. 8(a), we can see that for lower harmonics, same

as experimental findings,[71] their strength almost has no de-

pendence on the laser rotation angle, while for the higher har-

monics, their intensities change periodically twice with the in-

creasing the θ from 0◦ to 120◦, which indicates sixfold sym-

metry structure of graphene.

These results can be understood as follows. Under

a weaker laser field, electrons moves mainly around Dirac

cones, and these electrons will contribute to lower order har-

monics, so band structure of a solid appears unimportant.

With the increase of field strength, electrons are driven be-

yond Dirac cones, inter-band current will play major role and

give rise to higher harmonics [Figs. 8(c) and 8(d)], and re-

sults reveal a strong link between sixfold symmetry structure

of graphene and inter-band polarization [Fig. 8(b)].
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4. Conclusion

In summary, in order to simulate the HHG from graphene

we propose a new efficient theoretical approach in this pa-

per. Unlike the previous methods, we solve the semiconductor

Bloch equations in velocity gauge, which has the advantages

of no defect of divergence of dipole transition moment around

Dirac points, avoiding the solve the gradient of dipole transi-

tion moment.

Using our method, we have investigated some typical is-

sues associated with HHG from graphene. Our simulations

demonstrate that our method can be used successfully to an-

alyze the electron dynamics in valence band and conduction

band, especially for the initial condition py = 0. We show

that harmonic yields in two perpendicular directions depend

differently on the ellipticity of driving laser pulse, and the 3rd-

harmonic intensity decreases monotonically with the laser el-

lipticity, while the 5th, 7th, and 9th harmonics can be enhanced

at a particular ellipticity, and it reaches to its maximum when

ε ≈ 0.3, which are in agreement with the experimental find-

ings. Our simulations for the HHG dependence on the crystal

orientation also show that sixfold symmetry of graphene can

be retrieved from higher harmonics, which can be further con-

firmed in the experiments.

In addition to graphene, our method can be also used

to investigate the interaction of strong laser fields with other

zero-band-gap systems, such as surface states of topological

insulators.[74,75]
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